Diflunisal inhibits prestin by chloride-dependent mechanism
نویسندگان
چکیده
The motor protein prestin is a member of the SLC26 family of anion antiporters and is essential to the electromotility of cochlear outer hair cells and for hearing. The only direct inhibitor of electromotility and the associated charge transfer is salicylate, possibly through direct interaction with an anion-binding site on prestin. In a screen to identify other inhibitors of prestin activity, we explored the effect of the non-steroid anti-inflammatory drug diflunisal, which is a derivative of salicylate. We recorded prestin activity by whole-cell patch clamping HEK cells transiently expressing prestin and mouse outer hair cells. We monitored the impact of diflunisal on the prestin-dependent non-linear capacitance and electromotility. We found that diflunisal triggers two prestin-associated effects: a chloride independent increase in the surface area and the specific capacitance of the membrane, and a chloride dependent inhibition of the charge transfer and the electromotility in outer hair cells. We conclude that diflunisal affects the cell membrane organization and inhibits prestin-associated charge transfer and electromotility at physiological chloride concentrations. The inhibitory effects on hair cell function are noteworthy given the proposed use of diflunisal to treat neurodegenerative diseases.
منابع مشابه
Salicylate, diflunisal and their metabolites inhibit CBP/p300 and exhibit anticancer activity
Salicylate and acetylsalicylic acid are potent and widely used anti-inflammatory drugs. They are thought to exert their therapeutic effects through multiple mechanisms, including the inhibition of cyclo-oxygenases, modulation of NF-κB activity, and direct activation of AMPK. However, the full spectrum of their activities is incompletely understood. Here we show that salicylate specifically inhi...
متن کاملNonmammalian orthologs of prestin (SLC26A5) are electrogenic divalent/chloride anion exchangers.
Individual members of the mammalian SLC26 anion transporter family serve two fundamentally distinct functions. Whereas most members transport different anion substrates across a variety of epithelia, prestin (SLC26A5) is special, functioning as a membrane-localized motor protein that generates electrically induced motions (electromotility) in auditory sensory hair cells of the mammalian inner e...
متن کاملAn Engineered Pendrin: an Anion Transporter and Molecular Motor
Pendrin and prestin both belong to a distinct anion transporter family called solute carrier protein 26A, or SLC26A. Pendrin (SLC26A4) is a chloride-iodide transporter that is found at the luminal membrane of follicular cells in the thyroid gland as well as in the endolymphatic duct and sac of the inner ear. Whereas, prestin (SLC26A5) is expressed in the plasma membrane of cochlear outer hair c...
متن کاملControl of mammalian cochlear amplification by chloride anions.
Chloride ions have been hypothesized to interact with the membrane outer hair cell (OHC) motor protein, prestin on its intracellular domain to confer voltage sensitivity (Oliver et al., 2001). Thus, we hypothesized previously that transmembrane chloride movements via the lateral membrane conductance of the cell, GmetL, could serve to underlie cochlear amplification in the mammal. Here, we repor...
متن کاملThe chloride‐channel blocker 9‐anthracenecarboxylic acid reduces the nonlinear capacitance of prestin‐associated charge movement
The basis of the extraordinary sensitivity and frequency selectivity of the cochlea is a chloride-sensitive protein called prestin which can produce an electromechanical response and which resides in the basolateral plasma membrane of outer hair cells (OHCs). The compound 9-anthracenecarboxylic acid (9-AC), an inhibitor of chloride channels, has been found to reduce the electromechanical respon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017